22,795 research outputs found

    Gas-filled microbubbles: a novel susceptibility contrast agent for brain and liver MRI

    Get PDF
    Theme: Engineering the Future of BiomedicineGas-filled microbubbles have the potential to become a unique intravascular MR contrast agent due to their magnetic susceptibility effect, biocompatibility and localized manipulation via ultrasound cavitation. However, in vivo demonstration of microbubble susceptibility effect is limited so far and microbubble susceptibility effect is relatively weak when compared with other intravascular MR susceptibility contrast agents. In this study, two types of microbubbles, custom-made albumin-coated microbubbles (AMBs) and a commercially available lipid-based clinical ultrasound contrast agent (SonoVue® ), were investigated with in vivo dynamic brain and liver MRI in Sprague-Dawley rats at 7 Tesla. Transverse relaxation rate enhancements (ΔR2*) maps were computed for brain and liver, yielding results similar to those obtained with a common MR blood pool contrast agent. These results indicate that gas-filled microbubbles can serve as an intravascular MR contrast agent at high field. Enhancement of microbubble susceptibility effect by entrapping monocrystalline iron oxide nanoparticles (MIONs) into microbubbles was also investigated at 7 T in vitro. This is the first experimental demonstration of microbubble susceptibility enhancement for MRI application. This study indicates that gas-filled microbubble susceptibility effect can be substantially increased using iron oxides nanoparticles. With such approach, microbubbles can potentially be visualized with higher sensitivity and lower concentrations by MRI. Such capability has the potential to lead to real-time MRI guidance in various microbubble-based drug delivery and therapeutic applications. ©2009 IEEE.published_or_final_versionThe 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009), Minneapolis, MN., 3-6 September 2009. In Proceedings of the 31st EMBC, 2009, p. 4049-405

    Modelling coupled water and heat transport in a soil–mulch–plant–atmosphere continuum (SMPAC) system

    Get PDF
    Author name used in this publication: K. W. Chau2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Vehicle Re-identification in Still Images: Application of Semi-supervised Learning and Re-ranking

    Get PDF
    Vehicle re-identification (re-ID), namely, finding exactly the same vehicle from a large number of vehicle images, remains a great challenge in computer vision. Most existing vehicle re-ID approaches follow a fully supervised learning methodology, in which sufficient labeled training data is required. However, this limits their scalability to realistic applications, due to the high cost of data labeling. In this paper, we adopted a Generative Adversarial Network (GAN) to generate unlabeled samples and enlarge the training set. A semi supervised learning scheme with the Convolutional Neural Networks (CNN) was proposed accordingly, which assigns a uniform label distribution to the unlabeled images to regularize the supervised model and improve the performance of the vehicle re-ID system. Besides, an improved re-ranking method based on the Jaccard distance and k-reciprocal nearest neighbors is proposed to optimize the initial rank list. Extensive experiments over the benchmark datasets VeR1-776, VehicleID and VehicleReID have demonstrated that the proposed method outperforms the state-of-the-art approaches for vehicle re-ID

    MRI detection of peritoneal adhesion with dialysate enhancement

    Get PDF
    This study investigated the use of clinical peritoneal dialysis fluid (dialysate) as a peritoneal contrast agent to visualize peritoneal adhesions in rats at 7 Tesla. Intraperitoneal injection of dialysate (~0.1 mL/g) allowed the MR detection of peritoneal adhesions that were surgically induced in all rats studied (N = 6). MR measurements of adhesion surface areas correlated well with the postmortem estimations (R = 0.99). T1 and T2 values of undiluted dialysate were found to be 3017.5¡Ó35.3 ms and 108.4¡Ó2.0 ms, respectively. These findings demonstrated dialysate-enhanced MRI as a potentially valuable technique in clinical detection and evaluation of post-surgical peritoneal adhesion and to monitor therapeutic interventions (i.e., against peritoneal adhesion) in future preclinical research.published_or_final_versio

    Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.

    Get PDF
    Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.This research is supported by the Center forDynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant no. MOST103-2911-I-008-001). Also, it is supported by National Chung-Shan Institute of Science & Technology in Taiwan (Grant nos. CSIST-095-V301 and CSIST-095-V302)

    In vivo manganese-enhanced MRI and diffusion tensor imaging of developing and impaired visual brains

    Get PDF
    This study explored the feasibility of high-resolution Mn-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) for in vivo assessments of the development and reorganization of retinal and visual callosal pathways in normal neonatal rodent brains and after early postnatal visual impairments. Using MEMRI, intravitreal Mn 2+ injection into one eye resulted in maximal T1-weighted hyperintensity in neonatal contralateral superior colliculus (SC) 8 hours after administration, whereas in adult contralateral SC signal increase continued at 1 day post-injection. Notably, mild but significant Mn 2+ enhancement was observed in the ipsilateral SC in normal neonatal rats, and in adult rats after neonatal monocular enucleation (ME) but not in normal adult rats. Upon intracortical Mn 2+ injection to the visual cortex, neonatal binocularly-enucleated (BE) rats showed an enhancement of a larger projection area, via the splenium of corpus callosum to the V1/V2 transition zone of the contralateral hemisphere in comparison to normal rats. For DTI, the retinal pathways projected from the enucleated eyes possessed lower fractional anisotropy (FA) 6 weeks after BE and ME. Interestingly, in the optic nerve projected from the remaining eye in ME rats a significantly higher FA was observed compared to normal rats. The results of this study are potentially important for understanding the axonal transport, microstructural reorganization and functional activities in the living visual brain during early postnatal development and plasticity in a global and longitudinal setting. © 2011 IEEE.published_or_final_versionThe 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2011), Boston, MA., 30 August-3 September 2011. In IEEE Engineering in Medicine and Biology Society Conference Proceedings, 2011, p. 7005-700

    Effect of Scopoletin on Apoptosis and Cell Cycle Arrest in Human Prostate Cancer Cells In vitro

    Get PDF
    Purpose: To investigate the anticancer activity of scopoletin against human prostate cancer.Methods: The anticancer activity of scopoletin was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MMT) assay. Flow cytometry using propidium iodide and annexin V-FITC was employed to study apoptosis and cell cycle analysis. Hoechst 33258 staining was used to assess the effect of scopoletin on cell morphology and apoptotic body formation in human prostate carcinoma (LNCaP) cells via Florescence microscopy and finally Western blotting was used to evaluate the effect of scopoletin on cyclin D1 and cyclin B1 expressions.Results: Scopoletin induced a dose-dependent growth inhibition in LNCaP prostate cancer cells. It induced G2/M phase growth arrest and led to an increase in the sub-G0/G1 cell population after treatment with increasing doses compared to control cells, scopoletin treatment resulted in cell shrinkage along with membrane blebbing which are characteristic features of cell apoptosis. Approximately 15.45, 32.6 and 21.71 % of the cells underwent early apoptosis after treatment with 40, 80 and 100 μM of scopoletin respectively. Cyclin D expression diminished in a concentration-dependent manner when LNCaP cells were treated with different concentrations of scopoletin.Conclusion: These results reveal that scopoletin may be used as a natural chemotherapeutic agent against prostate cancer.Keywords: Prostate cancer, Apoptosis, Cell cycle analysis, Scopoletin, Flow cytometry, Fluorescence microscop

    Noninvasive fMRI investigation of interaural level difference processing the rat auditory subcortex

    Get PDF
    published_or_final_versio

    Non-viral Smad7 gene delivery and attenuation of postoperative peritoneal adhesion in an experimental model

    Get PDF
    Background: Postoperative intra-abdominal adhesion is associated with high morbidity and mortality. Smad7, a protein that occupies a strategic position in fibrogenesis, inhibits the transforming growth factor (TGF) β/Smad signalling pathway. In this study the therapeutic potential of exogenous Smad7 in preventing fibrogenesis in postoperative intra-abdominal adhesion was investigated. Methods: Intra-abdominal adhesion was induced in a rodent model by peritoneal abrasion. Smad7 was delivered into the peritoneal cavity by a non-viral ultrasound-microbubble-mediated naked gene transfection system. The effect of Smad7 transgene on adhesion formation was studied by measuring changes in TGF-β, fibrogenic factors, α-SMA and Smad2/3 activation in the anterior abdominal wall. Results: Four weeks after surgical abrasion, all rats developed significant peritoneal adhesion with enhanced TGF-β expression, increased levels of extracellular matrix components and activated myofibroblasts, accompanied by decreased Smad7 expression and increased Smad2/3 activation. In rats treated with the Smad7 transgene, the incidence and severity of peritoneal adhesion were significantly reduced, with biochemical downregulation of fibrogenic factors and inhibition of Smad2/3 activation. Serial quantitation using magnetic resonance imaging revealed a significant reduction in adhesion areas from day 14 onwards. Conclusion: Ultrasound-microbubble-mediated gene transfection provides timely targeted gene delivery for the treatment of postoperative peritoneal adhesions. Copyright © 2009 British Journal of Surgery Society Ltd. Published by John Wiley & Sons Ltd.postprin
    corecore